organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(6-Chloropyridin-3-yl)methyl]-4-[2,6dinitro-4-(trifluoromethyl)phenyl]piperazine

Ming-Yi Cai, Xiao-Yong Xu,* Hou-Ju Li, Zhu-Yan Zou and Lu Li

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, PO Box 544, 130 Meilong Road, Shanghai 200237, People's Republic of China Correspondence e-mail: xyxu@ecust.edu.cn

Received 26 April 2007; accepted 22 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.049; wR factor = 0.153; data-to-parameter ratio = 11.2.

In the title compound, $C_{17}H_{15}ClF_3N_5O_4$, the piperazine ring has a chair conformation, with the benzene and pyridine rings attached to the piperazine in equatorial positions. In addition, $C-H\cdots N$, $C-H\cdots O$ and $C-H\cdots F$ intermolecular hydrogen bonds link molecules into a two-dimensional network structure. The F atoms are disordered over two sites in an approximately 5:1 ratio.

Related literature

For related literature, see: Barbaro *et al.* (2001); Grundt *et al.* (2005); Lopez-Rodriguez *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{15}{\rm CIF_3N_5O_4} \\ M_r = 445.79 \\ {\rm Triclinic,} \ P\overline{1} \\ a = 8.131 \ (2) \ {\rm \AA} \\ b = 10.171 \ (3) \ {\rm \AA} \\ c = 13.159 \ (3) \ {\rm \AA} \\ \alpha = 79.992 \ (5)^\circ \\ \beta = 73.465 \ (4)^\circ \end{array}$

 $\gamma = 68.099 (4)^{\circ}$ $V = 965.2 (4) \text{ Å}^{3}$ Z = 2Mo K α radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 298 (2) K $0.39 \times 0.32 \times 0.24 \text{ mm}$

Data collection

```
Bruker APEX area-detector<br/>diffractometer4840 measured reflections<br/>3361 independent reflections<br/>2387 reflections with I > 2\sigma(I)<br/>R_{int} = 0.049R_{int} = 0.901, T_{max} = 0.937R_{int} = 0.049
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	94 restraints
$wR(F^2) = 0.153$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
3361 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
299 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8A\cdots O2^{i}$	0.97	2.52	3.387 (5)	149
C13−H13· · ·N1 ⁱⁱ	0.93	2.51	3.331 (4)	147
$C15-H15\cdots O2^{iii}$	0.93	2.54	3.466 (4)	178
$C5-H5\cdots O4^{iv}$	0.93	2.68	3.593 (5)	166
$C3-H3\cdots F3^{v}$	0.93	2.62	3.370 (16)	138

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) x, y, z + 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Key Project for Basic Research (grant No. 2003CB114405), the National Natural Science Foundation of China and the Shanghai Education Commission for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2055).

References

- Barbaro, R., Betti, M., Corelli, F., Giannaccini, G., Maccari, L., Manetti, F., Strappaghetti, G. & Corsano, S. (2001). J. Med. Chem. 44, 2118–2132.
- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
- Grundt, P., Carlson, E. E., Cao, J.-J., Bennett, J. J., McElveen, E., Taylor, M., Luedtke, R. R. & Newman, A. H. (2005). J. Med. Chem. 48, 839–848.
- Lopez-Rodriguez, M. L., Ayala, D., Benhamu, B., Morcillo, M. J. & Viso, A. (2002). Curr. Med. Chem. 9, 443–469.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3008 [doi:10.1107/S1600536807024968]

1-[(6-Chloropyridin-3-yl)methyl]-4-[2,6-dinitro-4-(trifluoromethyl)phenyl]piperazine

M.-Y. Cai, X.-Y. Xu, H.-J. Li, Z.-Y. Zou and L. Li

Comment

The derivatives of arylpiperazine are a core fragment of many bioactive compounds and have been widely investigated and found to show a variety of pharmacological effects, such as the ligands of the serotonin receptors (Barbaro *et al.*, 2001; Grundt *et al.*, 2005; Lopez-Rodriguez *et al.*, 2002, respectively). Introduction of an O-substituent in the aryl ring of the arylpiperazine derivative often greatly affects the affinity of the compound for binding the receptor, in part due to the influence of substituent on the compound conformation. As part of our investigation on the stereochemistry of the arylpiperazine derivatives, the crystal structure of the title compound $C_{17}H_{15}ClF_3N_5O_4$ (I), has been determined.

The molecular structure is shown in Fig. 1. Owing to the delocalization of the π -electrons in the phenyl ring, the bond length of C11—N3 is shorter than a single bond compared with C6—N2, C7—N2, C10—N2, C8—N3 and C9—N3 (Table 1). Additionally, the bond length of C1—N1 is shorter than that of C5—N1 due to the electron-withdrawing effect of C11. In the crystal structure (Fig. 2 and Table 2), a weak intermolecular hydrogen-bond contact exists between atoms C3 and F3, forming chains along the *c* axis. The solid state structure is also enhanced significantly by weak hydrogen-bond C15—H15…O2, C5—H5…O4, C8—H8A…O2 and C13—H13…N1.

Experimental

A solution of 6-chloro-3-(chloromethyl)pyridine (2 mmol) in ethanol (10 ml) was added dropwise into a solution of piperazine (4 mmol) and triethylamine (0.2 ml)in ethanol (30 ml) at 323–328 K. Then the mixture was stirred for 5 h at 328 K. After cooling, the mixture was treated with water (50 ml) and extracted with CH_2Cl_2 (3*50 ml). The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated to yield 1-((6-chloropyridin-3-yl)methyl)piperazine. A mixture of 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene (1 mmol), 1-((6-chloropyridin-3-yl)methyl)piperazine (1 mmol), K₂CO₃ (1 mmol) and dimethylformamide (15 ml) was stirred at 313 K for 3 h. After cooling, the mixture was treated with CH_2Cl_2 (3*50 ml). The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated to yield a dimethylformamide (15 ml) was stirred at 313 K for 3 h. After cooling, the mixture was treated with water (50 ml), and extracted with CH_2Cl_2 (3*50 ml). The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated. The residue was chromatographed over a column of silica gel and eluted with petroleum ether-ethyl acetate (4:1 ν/ν) to give the desired product (51% yield). Single crystals suitable for X-ray analysis were obtained from methanol solution (m.p. 435.7–437.5 K.).

Refinement

The CF3 disorder was modelled with the 3 Fatoms over 2 sites F1, F2 and F3 and F1', F2', F3' and their occupancies refined competitively to 0.836 (6) and 0.164 (6). The C—F distances were restrained to with 1.27 ± 0.02 Å. All H atom were initially located in a difference Fourier map, placed in geometrically idealized position and constrained to ride on their parent atom with C—H distances in the range 0.86–0.96 Å and $U_{iso}(H) = 1.2_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), with the atom numbering, showing displacement ellipsoids drawn at the 30% probability level. For clarity, the minor disorder component is omitted.

Fig. 2. The two-dimensional network structure of (I) formed by intermolecular hydrogen bonding interactions (shown as dashed lines). The minor disorder component is omitted for clarity.

1-[(6-Chloropyridin-3-yl)methyl]-4-[2,6-dinitro-4- (trifluoromethyl)phenyl]piperazine

Crystal data	
C ₁₇ H ₁₅ ClF ₃ N ₅ O ₄	Z = 2
$M_r = 445.79$	$F_{000} = 456$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.534 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.131 (2) Å	Cell parameters from 4932 reflections
b = 10.171 (3) Å	$\theta = 1.9-24.6^{\circ}$
c = 13.159 (3) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 79.992 \ (5)^{\circ}$	T = 298 (2) K
$\beta = 73.465 \ (4)^{\circ}$	Block, colorless
$\gamma = 68.099 \ (4)^{\circ}$	$0.39 \times 0.32 \times 0.24 \text{ mm}$
$V = 965.2 (4) \text{ Å}^3$	

Data collection

3361 independent reflections
2387 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.049$
$\theta_{max} = 25.1^{\circ}$
$\theta_{\min} = 1.6^{\circ}$
$h = -9 \rightarrow 9$
$k = -12 \rightarrow 7$
$l = -15 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained

$w R(F^2) = 0.153$	$w = 1/[\sigma^2(F_0^2) + (0.0852P)^2 + 0.0325P]$
WR(T) = 0.155	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
3361 reflections	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
299 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
94 restraints	Extinction correction: none
Deine and a stars with 1 and in a star store incoming this start	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.7887 (5)	0.7133 (4)	0.9578 (3)	0.0690 (9)	
C2	0.6835 (5)	0.6354 (5)	1.0161 (3)	0.0755 (10)	
H2	0.5902	0.6706	1.0751	0.091*	
C3	0.7197 (5)	0.5047 (4)	0.9848 (3)	0.0698 (10)	
Н3	0.6512	0.4487	1.0230	0.084*	
C4	0.8582 (4)	0.4550 (4)	0.8963 (2)	0.0618 (9)	
C5	0.9543 (5)	0.5425 (4)	0.8464 (3)	0.0711 (10)	
Н5	1.0500	0.5099	0.7878	0.085*	
C6	0.8963 (5)	0.3145 (4)	0.8573 (3)	0.0716 (9)	
H6A	1.0212	0.2810	0.8152	0.086*	
H6B	0.8845	0.2461	0.9178	0.086*	
C7	0.7992 (5)	0.1801 (4)	0.7693 (3)	0.0687 (9)	
H7A	0.7762	0.1229	0.8353	0.082*	
H7B	0.9250	0.1358	0.7314	0.082*	
C8	0.6745 (5)	0.1841 (4)	0.7032 (2)	0.0632 (8)	
H8A	0.6938	0.0885	0.6886	0.076*	
H8B	0.5481	0.2266	0.7407	0.076*	
C9	0.6850 (4)	0.4126 (3)	0.6243 (2)	0.0558 (8)	
H9A	0.5578	0.4580	0.6591	0.067*	
H9B	0.7129	0.4671	0.5576	0.067*	
C10	0.8044 (4)	0.4098 (3)	0.6939 (2)	0.0574 (8)	
H10A	0.9316	0.3722	0.6561	0.069*	
H10B	0.7794	0.5060	0.7100	0.069*	
C11	0.6827 (4)	0.2451 (3)	0.5118 (2)	0.0495 (7)	

C12	0.8179 (4)	0.2309 (3)	0.4177 (2)	0.0512 (7)	
C13	0.8032 (4)	0.2031 (3)	0.3236 (2)	0.0563 (8)	
H13	0.8972	0.1979	0.2627	0.068*	
C14	0.6456 (4)	0.1826 (3)	0.3203 (2)	0.0531 (7)	
C15	0.5092 (4)	0.1902 (3)	0.4110 (2)	0.0555 (8)	
H15	0.4051	0.1726	0.4104	0.067*	
C16	0.5276 (4)	0.2240 (3)	0.5028 (2)	0.0516 (7)	
C17	0.6235 (5)	0.1551 (4)	0.2189 (3)	0.0692 (9)	
Cl1	0.7482 (2)	0.87989 (14)	0.99492 (11)	0.1126 (5)	
N1	0.9221 (4)	0.6711 (4)	0.8747 (2)	0.0763 (9)	
N2	0.7724 (4)	0.3222 (3)	0.79287 (19)	0.0588 (7)	
N3	0.7159 (3)	0.2685 (2)	0.60416 (18)	0.0520 (6)	
N4	0.9940 (4)	0.2365 (3)	0.4205 (2)	0.0644 (7)	
N5	0.3677 (3)	0.2454 (4)	0.5935 (2)	0.0656 (7)	
01	1.0076 (4)	0.3452 (3)	0.4285 (2)	0.0932 (9)	
O2	1.1174 (4)	0.1253 (4)	0.4163 (4)	0.1380 (14)	
O3	0.2940 (4)	0.1571 (3)	0.6140 (2)	0.0954 (9)	
O4	0.3156 (3)	0.3535 (3)	0.6374 (2)	0.0912 (9)	
F1	0.662 (3)	0.0229 (16)	0.2097 (13)	0.094 (5)	0.164 (6)
F2	0.456 (2)	0.194 (2)	0.2174 (14)	0.097 (5)	0.164 (6)
F3	0.706 (3)	0.203 (2)	0.1355 (11)	0.087 (5)	0.164 (6)
F1'	0.5160 (7)	0.0821 (5)	0.2310 (3)	0.1118 (14)	0.836 (6)
F2'	0.5492 (7)	0.2745 (4)	0.1667 (3)	0.1255 (16)	0.836 (6)
F3'	0.7771 (5)	0.0868 (6)	0.1564 (3)	0.1275 (17)	0.836 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.070 (2)	0.085 (2)	0.0592 (19)	-0.0259 (18)	-0.0246 (17)	-0.0084 (17)
C2	0.069 (2)	0.106 (3)	0.0493 (19)	-0.028 (2)	-0.0090 (16)	-0.0140 (19)
C3	0.067 (2)	0.099 (3)	0.0507 (19)	-0.041 (2)	-0.0125 (16)	0.0024 (18)
C4	0.0554 (18)	0.081 (2)	0.0526 (18)	-0.0245 (17)	-0.0191 (15)	-0.0020 (16)
C5	0.0573 (19)	0.095 (3)	0.061 (2)	-0.032 (2)	-0.0004 (16)	-0.0135 (19)
C6	0.075 (2)	0.076 (2)	0.065 (2)	-0.0225 (19)	-0.0247 (18)	-0.0008 (17)
C7	0.087 (2)	0.055 (2)	0.0597 (19)	-0.0256 (18)	-0.0173 (18)	0.0074 (15)
C8	0.076 (2)	0.0559 (19)	0.0567 (19)	-0.0302 (16)	-0.0053 (16)	-0.0038 (14)
C9	0.0631 (18)	0.0478 (17)	0.0546 (17)	-0.0200 (15)	-0.0098 (14)	-0.0043 (13)
C10	0.0621 (18)	0.0559 (19)	0.0558 (18)	-0.0249 (15)	-0.0112 (15)	-0.0030 (14)
C11	0.0445 (15)	0.0467 (16)	0.0552 (17)	-0.0161 (13)	-0.0057 (13)	-0.0078 (12)
C12	0.0405 (14)	0.0585 (18)	0.0568 (18)	-0.0206 (13)	-0.0067 (13)	-0.0099 (14)
C13	0.0496 (16)	0.064 (2)	0.0549 (18)	-0.0234 (15)	-0.0032 (14)	-0.0094 (14)
C14	0.0509 (16)	0.0524 (17)	0.0599 (17)	-0.0210 (13)	-0.0168 (14)	-0.0010 (13)
C15	0.0449 (16)	0.0564 (19)	0.070 (2)	-0.0232 (14)	-0.0165 (15)	0.0016 (15)
C16	0.0377 (14)	0.0492 (17)	0.0610 (19)	-0.0127 (13)	-0.0037 (13)	-0.0050 (13)
C17	0.072 (2)	0.082 (3)	0.065 (2)	-0.037 (2)	-0.0234 (18)	0.0014 (19)
Cl1	0.1419 (11)	0.0949 (9)	0.1115 (10)	-0.0327 (8)	-0.0469 (8)	-0.0247 (7)
N1	0.0707 (19)	0.096 (2)	0.071 (2)	-0.0408 (18)	-0.0118 (16)	-0.0089 (17)
N2	0.0673 (16)	0.0586 (16)	0.0510 (15)	-0.0238 (13)	-0.0139 (13)	-0.0005 (12)

N3	0.0568 (14)	0.0505 (15)	0.0481 (14)	-0.0226 (12)	-0.0048 (11)	-0.0057 (11)
N4	0.0459 (14)	0.081 (2)	0.0682 (17)	-0.0248 (15)	-0.0024 (12)	-0.0230 (14)
N5	0.0415 (14)	0.076 (2)	0.0690 (18)	-0.0172 (15)	-0.0021 (12)	-0.0052 (15)
O1	0.0840 (17)	0.0972 (19)	0.119 (2)	-0.0597 (16)	-0.0191 (15)	-0.0056 (16)
O2	0.0605 (17)	0.134 (3)	0.235 (4)	-0.0209 (18)	-0.037 (2)	-0.079 (3)
O3	0.0716 (17)	0.102 (2)	0.105 (2)	-0.0489 (17)	0.0107 (15)	0.0008 (16)
O4	0.0546 (14)	0.102 (2)	0.100 (2)	-0.0168 (14)	0.0134 (13)	-0.0421 (17)
F1	0.111 (7)	0.088 (6)	0.088 (7)	-0.028 (5)	-0.034 (5)	-0.016 (4)
F2	0.090 (6)	0.114 (8)	0.096 (7)	-0.029 (5)	-0.040 (5)	-0.018 (5)
F3	0.097 (7)	0.096 (7)	0.070 (6)	-0.042 (5)	-0.014 (4)	-0.005 (4)
F1'	0.140 (3)	0.151 (3)	0.097 (2)	-0.102 (3)	-0.041 (2)	-0.005 (2)
F2'	0.181 (4)	0.110 (3)	0.098 (2)	-0.043 (2)	-0.080 (2)	0.0219 (18)
F3'	0.093 (2)	0.196 (4)	0.102 (2)	-0.027 (2)	-0.0241 (18)	-0.084 (2)

Geometric parameters (Å, °)

1.303 (4)	С9—Н9В	0.9700
1.367 (5)	C10—N2	1.461 (4)
1.732 (4)	C10—H10A	0.9700
1.361 (5)	C10—H10B	0.9700
0.9300	C11—C12	1.391 (4)
1.383 (5)	C11—N3	1.393 (4)
0.9300	C11—C16	1.395 (4)
1.363 (5)	C12—C13	1.364 (4)
1.495 (5)	C12—N4	1.465 (4)
1.333 (5)	C13—C14	1.386 (4)
0.9300	С13—Н13	0.9300
1.465 (4)	C14—C15	1.370 (4)
0.9700	C14—C17	1.482 (5)
0.9700	C15—C16	1.373 (4)
1.455 (4)	C15—H15	0.9300
1.498 (5)	C16—N5	1.469 (4)
0.9700	C17—F3	1.240 (13)
0.9700	C17—F2	1.275 (14)
1.458 (4)	C17—F1	1.281 (14)
0.9700	N4—O1	1.177 (4)
0.9700	N4—O2	1.197 (4)
1.451 (4)	N5—O4	1.207 (4)
1.503 (4)	N5—O3	1.210 (4)
0.9700		
124.7 (4)	С9—С10—Н10А	109.4
115.9 (3)	N2	109.4
119.4 (3)	C9—C10—H10B	109.4
117.8 (3)	H10A-C10-H10B	108.0
121.1	C12-C11-N3	119.6 (2)
121.1	C12-C11-C16	113.4 (3)
120.1 (3)	N3—C11—C16	126.8 (3)
119.9	C13—C12—C11	124.7 (3)
119.9	C13—C12—N4	117.0 (2)
	$\begin{array}{c} 1.303 \ (4) \\ 1.367 \ (5) \\ 1.732 \ (4) \\ 1.361 \ (5) \\ 0.9300 \\ 1.383 \ (5) \\ 0.9300 \\ 1.363 \ (5) \\ 1.495 \ (5) \\ 1.333 \ (5) \\ 0.9300 \\ 1.465 \ (4) \\ 0.9700 \\ 0.9700 \\ 1.455 \ (4) \\ 1.498 \ (5) \\ 0.9700 \\ 0.9700 \\ 1.458 \ (4) \\ 0.9700 \\ 0.9700 \\ 1.451 \ (4) \\ 1.503 \ (4) \\ 0.9700 \\ 124.7 \ (4) \\ 115.9 \ (3) \\ 119.4 \ (3) \\ 117.8 \ (3) \\ 121.1 \\ 120.1 \ (3) \\ 119.9 \\ 119.9 \end{array}$	1.303 (4) $C9-H9B$ $1.367 (5)$ $C10-N2$ $1.732 (4)$ $C10-H10A$ $1.361 (5)$ $C10-H10B$ 0.9300 $C11-C12$ $1.383 (5)$ $C11-N3$ 0.9300 $C11-C16$ $1.363 (5)$ $C12-C13$ $1.495 (5)$ $C12-H4$ 0.9300 $C13-H13$ $1.495 (5)$ $C13-C14$ 0.9300 $C13-H13$ $1.495 (5)$ $C14-C15$ 0.9300 $C13-H13$ $1.465 (4)$ $C14-C15$ 0.9700 $C15-C16$ $1.455 (4)$ $C15-H15$ $1.498 (5)$ $C16-N5$ 0.9700 $C17-F3$ 0.9700 $C17-F1$ 0.9700 $N4-O1$ 0.9700 $N4-O2$ $1.451 (4)$ $N5-O4$ $1.503 (4)$ $N5-O3$ 0.9700 $V2-C10-H10A$ $115.9 (3)$ $N2-C10-H10B$ $117.8 (3)$ $H10A-C10-H10B$ $117.8 (3)$ $H10A-C10-H10B$ 121.1 $C12-C11-N3$ 121.1 $C12-C11-C16$ 19.9 $C13-C12-C11$ 119.9 $C13-C12-C11$

C5—C4—C3	116.1 (3)	C11—C12—N4	118.1 (3)
C5—C4—C6	122.5 (3)	C12-C13-C14	118.8 (3)
C3—C4—C6	121.4 (3)	C12—C13—H13	120.6
N1C5C4	125.2 (3)	C14—C13—H13	120.6
N1—C5—H5	117.4	C15-C14-C13	119.6 (3)
С4—С5—Н5	117.4	C15—C14—C17	120.2 (3)
N2-C6-C4	112.3 (3)	C13—C14—C17	120.2 (3)
N2—C6—H6A	109.1	C14—C15—C16	119.3 (3)
C4—C6—H6A	109.1	C14—C15—H15	120.3
N2—C6—H6B	109.1	C16—C15—H15	120.3
С4—С6—Н6В	109.1	C15—C16—C11	124.0 (3)
Н6А—С6—Н6В	107.9	C15—C16—N5	116.2 (3)
N2—C7—C8	111.3 (3)	C11—C16—N5	119.8 (3)
N2—C7—H7A	109.4	F3—C17—F2	108.7 (13)
С8—С7—Н7А	109.4	F3—C17—F1	107.3 (12)
N2—C7—H7B	109.4	F2—C17—F1	96.7 (13)
С8—С7—Н7В	109.4	F3—C17—C14	117.3 (8)
Н7А—С7—Н7В	108.0	F2—C17—C14	111.8 (8)
N3—C8—C7	107.6 (3)	F1—C17—C14	113.1 (7)
N3—C8—H8A	110.2	C1—N1—C5	116.0 (3)
С7—С8—Н8А	110.2	C7—N2—C10	109.8 (2)
N3—C8—H8B	110.2	C7—N2—C6	109.9 (3)
С7—С8—Н8В	110.2	C10—N2—C6	110.4 (3)
H8A—C8—H8B	108.5	C11—N3—C9	119.1 (2)
N3—C9—C10	109.6 (2)	C11—N3—C8	120.4 (2)
N3—C9—H9A	109.8	C9—N3—C8	111.0 (2)
С10—С9—Н9А	109.8	O1—N4—O2	123.7 (3)
N3—C9—H9B	109.8	O1—N4—C12	120.3 (3)
С10—С9—Н9В	109.8	O2—N4—C12	116.0 (3)
Н9А—С9—Н9В	108.2	O4—N5—O3	125.7 (3)
N2—C10—C9	111.0 (2)	O4—N5—C16	117.0 (3)
N2-C10-H10A	109.4	O3—N5—C16	117.2 (3)
N1—C1—C2—C3	-0.4 (5)	C13—C14—C17—F1	98.4 (12)
Cl1—C1—C2—C3	-179.8 (3)	C15—C14—C17—F3'	-149.5 (4)
C1—C2—C3—C4	-0.5 (5)	C13—C14—C17—F3'	31.5 (5)
C2—C3—C4—C5	1.4 (5)	C15—C14—C17—F1'	-27.9(5)
C2—C3—C4—C6	-177.4 (3)	C13—C14—C17—F1'	153.0 (4)
C3—C4—C5—N1	-1.6 (5)	C15—C14—C17—F2'	90.2 (4)
C6—C4—C5—N1	177.2 (3)	C13—C14—C17—F2'	-88.8 (4)
C5—C4—C6—N2	-97.5 (4)	C2—C1—N1—C5	0.2 (5)
C3—C4—C6—N2	81.2 (4)	Cl1—C1—N1—C5	179.6 (3)
N2—C7—C8—N3	60.1 (4)	C4—C5—N1—C1	0.8 (5)
N3—C9—C10—N2	-56.4 (3)	C8—C7—N2—C10	-58.3 (4)
N3—C11—C12—C13	177.7 (3)	C8—C7—N2—C6	-179.9 (3)
C16—C11—C12—C13	1.7 (4)	C9—C10—N2—C7	55.7 (3)
N3-C11-C12-N4	2.1 (4)	C9—C10—N2—C6	177.0 (3)
C16-C11-C12-N4	-173.9 (3)	C4—C6—N2—C7	-172.4 (3)
C11-C12-C13-C14	-2.1 (5)	C4—C6—N2—C10	66.4 (4)
N4-C12-C13-C14	173.6 (3)	C12—C11—N3—C9	85.1 (3)

-0.2 (4)	C16—C11—N3—C9	-99.5 (3)
178.8 (3)	C12—C11—N3—C8	-131.6 (3)
2.8 (4)	C16—C11—N3—C8	43.8 (4)
-176.2 (3)	C10-C9-N3-C11	-153.9 (2)
-3.3 (5)	C10—C9—N3—C8	59.6 (3)
173.5 (3)	C7—C8—N3—C11	153.2 (3)
1.0 (4)	C7—C8—N3—C9	-60.8 (3)
-174.6 (3)	C13—C12—N4—O1	110.7 (4)
-175.7 (3)	C11—C12—N4—O1	-73.3 (4)
8.7 (5)	C13—C12—N4—O2	-70.7 (4)
151.7 (12)	C11—C12—N4—O2	105.3 (4)
-27.3 (13)	C15-C16-N5-O4	-128.9 (3)
25.2 (13)	C11—C16—N5—O4	48.0 (4)
-153.8 (12)	C15-C16-N5-O3	47.2 (4)
-82.6 (12)	C11—C16—N5—O3	-135.9 (3)
	$\begin{array}{c} -0.2 \ (4) \\ 178.8 \ (3) \\ 2.8 \ (4) \\ -176.2 \ (3) \\ -3.3 \ (5) \\ 173.5 \ (3) \\ 1.0 \ (4) \\ -174.6 \ (3) \\ -175.7 \ (3) \\ 8.7 \ (5) \\ 151.7 \ (12) \\ -27.3 \ (13) \\ 25.2 \ (13) \\ -153.8 \ (12) \\ -82.6 \ (12) \end{array}$	-0.2 (4) $C16-C11-N3-C9$ $178.8 (3)$ $C12-C11-N3-C8$ $2.8 (4)$ $C16-C11-N3-C8$ $-176.2 (3)$ $C10-C9-N3-C11$ $-3.3 (5)$ $C10-C9-N3-C8$ $173.5 (3)$ $C7-C8-N3-C11$ $1.0 (4)$ $C7-C8-N3-C9$ $-174.6 (3)$ $C13-C12-N4-O1$ $-175.7 (3)$ $C11-C12-N4-O2$ $8.7 (5)$ $C13-C12-N4-O2$ $151.7 (12)$ $C11-C12-N4-O2$ $-27.3 (13)$ $C15-C16-N5-O4$ $25.2 (13)$ $C15-C16-N5-O4$ $-153.8 (12)$ $C15-C16-N5-O3$ $-82.6 (12)$ $C11-C16-N5-O3$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C8—H8A····O2 ⁱ	0.97	2.52	3.387 (5)	149
C13—H13···N1 ⁱⁱ	0.93	2.51	3.331 (4)	147
C15—H15…O2 ⁱⁱⁱ	0.93	2.54	3.466 (4)	178
C5—H5····O4 ^{iv}	0.93	2.68	3.593 (5)	166
C3— $H3$ ···F3 ^v	0.93	2.62	3.370 (16)	138

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*; (v) *x*, *y*, *z*+1.

